End-joining deficiency and radiosensitization induced by gemcitabine.
نویسندگان
چکیده
The mechanism of radiosensitization by gemcitabine (2',2'-difluoro-2'-deoxycytidine, dFdC) is not exactly known. We investigated the possible role of inhibition of the repair of DNA double-strand breaks by dFdC by measuring the extent of radiosensitization in different cell lines deficient and proficient in components of nonhomologous end-joining and in the parental cell lines. Different cell lines were incubated with 0.5 and 5 microM dFdC for 4 h. Cells deficient in DNA-dependent protein-kinase catalytic subunit (V3) showed sensitization similar to that of wild-type cells (AAS) and complemented cells (V3+YAC). Ku80-deficient cells (xrs5 and xrs6) showed even more radiosensitization by dFdC as compared with wild-type CHO-K1. However, Ku80-complemented cell lines (xrs5+huKu80 and xrs6+haKu80) did not show radiosensitization. The differences in dFdC-mediated radiosensitization were not attributable to different changes in deoxynucleotide triphosphate levels and cell cycle distribution. We conclude that a functional nonhomologous end-joining pathway is not required for dFdC-mediated radiosensitization.
منابع مشابه
In vitro study of radiosensitization of PLGA-SPION nanoparticles loaded with Gemcitabine
Introduction: To increase the radiation therapy efficiency, two approaches have been employed which include increasing the dose delivery or modifying the biological response to ionizing radiation. This study aimed to modify the biological response to ionizing radiation by combination therapy using radio-sensitizer agent and anticancer drug. Materials and Methods:</str...
متن کاملPreparation, optimization and toxicity evaluation of (SPION-PLGA) ±PEG nanoparticles loaded with Gemcitabine as a multifunctional nanoparticle for therapeutic and diagnostic applications
The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA±PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were synthesized and encapsulated simultaneously with Gemcitabine (Gem) in PLGA±PEG copolymers via W/O/W double emulsification method. Optimum size and enca...
متن کاملPreparation, optimization and toxicity evaluation of (SPION-PLGA) ±PEG nanoparticles loaded with Gemcitabine as a multifunctional nanoparticle for therapeutic and diagnostic applications
The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA±PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were synthesized and encapsulated simultaneously with Gemcitabine (Gem) in PLGA±PEG copolymers via W/O/W double emulsification method. Optimum size and enca...
متن کامل(SPION-PLGA) ±PEG nanoparticles loaded with Gemcitabine as a multifunctional nanoparticle for therapeutic and diagnostic applications
Abstract The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA±PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were synthesized and encapsulated simultaneously with Gemcitabine (Gem) in PLGA±PEG copolymers via W/O/W double emulsification me...
متن کاملThe combination of epidermal growth factor receptor inhibitors with gemcitabine and radiation in pancreatic cancer.
PURPOSE Gemcitabine-radiotherapy is a standard treatment for locally advanced pancreatic cancer. Clinical data have shown that gemcitabine plus erlotinib is superior to gemcitabine alone for advanced pancreatic cancer. Therefore, we investigated the effects of the combination of epidermal growth factor receptor inhibitors with gemcitabine and radiation on a pancreatic cancer model. EXPERIMENT...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 61 4 شماره
صفحات -
تاریخ انتشار 2001